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We show that for any positive integers k<m there exists a sequence p0 , ..., pm of
orthogonal polynomials ( pi having degree i) such that pk and pm have min[k, m&k&1]
zeros in common, the maximum possible. More generally, if, in a sequence p0 , ..., pm

of orthogonal polynomials, pk and pm have no common zero, then for every n
(m+1�n�m+k), there exists an orthogonal sequence q0 , ..., qn such that
(i) qk= pk and (ii) the zeros of qn are precisely the zeros of pm together with n&m
zeros of pk . � 2000 Academic Press
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1. INTRODUCTION

Let p0 , p1 , p2 , ... be a sequence of orthogonal polynomials, where the
degree of p i is i. Fix positive integers k<n, and let z1< } } } <zk denote the
zeros of pk . A classical interlacing theorem (see [2, Theorem 3.3.3], for
instance) states that each of the k+1 open intervals

(&�, z1), (z1 , z2), ..., (zk&1 , zk), (zk , �)

contains at least one zero of pn . This establishes that at least k+1 zeros of
pn are distinct from the zeros of pk , or, equivalently, pn(zi)=0 for at most
n&k&1 values of i. Thus we have a general bound:

pk and pn have at most min[k, n&k&1] zeros in common. (1)

From the theoretical point of view, it is natural to ask whether there exist
other general restrictions on the number of common zeros between two
polynomials in an orthogonal sequence, apart from the interlacing property
just cited or whether the bound (1) is sharp. In fact, the bound (1) is sharp
in the following sense.
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Theorem. For any positive integers k<n, there exists a sequence
q0 , ..., qn of monic, orthogonal polynomials such that qk and qn have precisely
min[k, n&k&1] zeros in common.

We prove this, as well as a more general result, Theorem 1, in Section 2.
The subsection below is devoted to terminology and notation.

1.1. Terminology and Notation

A sequence p0 , p1 , p2 , ... of real polynomials in one variable is orthogonal
if, for some measure + on the real line R,

0<|
R

p2
i d+<� and |

R
pi p j d+=0, (2)

for every i, j�0 where i{ j.
In the present article, the index i of the polynomial pi in such a sequence

will always coincide with the degree of pi .
We confine our attention to finite sequences of monic polynomials. This

does not result in any loss of generality. Note that if

p0 , p1 , ..., pn

is a finite sequence of monic, orthogonal polynomials, then there exists a
measure +, satisfying (2), which is supported on a finite set. Also, p0 #1.

A Jacobi matrix is a symmetrical, tridiagonal matrix whose next-to-
diagonal elements are strictly positive.

The symbol Pn denotes the space of polynomials having degree �n.

2. THE MAIN RESULT

Theorem 1. Let k<m<n be positive integers where n&m�k. Suppose
that p0 , ..., pm is a sequence of monic, orthogonal polynomials such that
pk and pm have no common zero. Let z1 , ..., zn&m be any n&m zeros of pk .
Then there exists a sequence q0 , ..., qn of monic, orthogonal polynomials
satisfying:

(i) qk= pk ;

(ii) the zeros of qn are precisely the zeros of pm together with z1 , ..., zn&m .

Proof. Let + be a measure with respect to which p0 , ..., pm are orthogonal.
Let *1< } } } <*m be the zeros of pm , and let w1 , ..., wm be the corresponding
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weights for the m-point Gauss�Jacobi quadrature formula associated to d+
(see [2, Sect. 3.4]). Set

*� i={*i

zi&m

(1�i�m)
(m+1�i�n)

.

In addition, set w~ i=wi for 1�i�m. Choose w~ m+1 , ..., w~ n to be arbitrary,
positive real numbers. The hypothesis that pk and pm have no common
zeros implies that the *� i are all distinct. The discrete scalar product ( } , } )
on Pn&1 defined by

(p, q) = :
n

i=1

p(*� i) q(*� i) w~ i

engenders a sequence q0 , ..., qn of monic, orthogonal polynomials, where
each qk (1�k�n) is uniquely characterized as being monic of degree k
and orthogonal to Pk&1 with respect to ( } , } ). (See [1].) We claim that
pk is orthogonal to Pk&1 with respect to ( } , } ) . To see this, let r # Pk&1 .
Then

(r, pk) = :
n

i=1

r(*� i) pk(*� i) w~ i

= :
m

i=1

r(*i) pk(* i) w i (by choice of the *� i and w~ i)

=|
R

rpk d+ (exactness of Gauss�Jacobi quadrature on P2m&1)

=0 (since pk =Pk&1 with respect to d+).

It follows that pk=qk , since pk is monic of degree k.
To see that (ii) holds, note that the zeros *1 , ..., *m of pm are among the

zeros *� 1 , ..., *� n of qn . And z1 , ..., zn&m are also among the zeros *� 1 , ..., *� n

of qn . K

The hypothesis of Theorem 1 elicits the question: Does there exist, for all
positive integers k<m, a sequence p0 , ..., pm with the property that pk and
pm have no common zero? In fact almost every m-element sequence has
this property. Before sketching why this is true, we recall the well-known
connection between orthogonal polynomials and Jacobi matrices. A sequence
p0 , ..., pm of monic, orthogonal polynomials satisfies a recursion of the form

p1(x)=x&a1
(3)

pk(x)=(x&ak) pk&1(x)&bk&1 pk&2(x) (2�k�m),
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where bi>0 (1�i�m&1). The associated Jacobi matrix

a1 - b1 0 } } } 0

- b1 a2 - b2 b
J=\ 0 - b2

. . .
. . . 0 +b . . . - bm&1

0 } } } 0 - bm&1 am

has the property that pi is the characteristic polynomial of the i th leading,
principal submatrix Ji of J for 1�i�m. In this way, there is a bijective
correspondence between the class of (m+1)-element sequences p0 , ..., pm of
monic, orthogonal polynomials and the class of m_m Jacobi matrices.
(See [1] for details.) Now, fix J as above and let J� denote the matrix
obtained from J by replacing the (m, m) entry, am , by a parameter a~ m . The
matrix J� gives rise to the same initial sequence p0 , ..., pm&1 as J. But (by
consideration of the recursion (3)), the characteristic polynomial p~ m of J�
and pm have a common zero only if a~ m=am , in which case p~ m= pm . Now,
suppose that, for a~ m=t, p~ m and pk do have a common zero. Then, for
every sufficiently small perturbation a~ m=t+=, the corresponding p~ m has
no zero in common with pk . Therefore the values of a~ m for which p~ m and
pk have a common zero are isolated and hence have measure zero.

Theorem 2. For any positive integers k<n, there exists a sequence q0 , ..., qn

of orthogonal polynomials such that qk and qn have precisely min[k, n&k&1]
zeros in common.

Proof. To avoid the trivial case min[k, n&k&1]=0, suppose 0<k<
n&1. If min[k, n&k&1]=k, apply Theorem 1 with m=n&k. Otherwise
apply the theorem with m=k+1. K
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